Using Multiple Processors for Monte Carlo Analysis of System Models
نویسنده
چکیده
Model-Based Design has become a standard in the automotive industry. In addition to the well-documented advantages that come from modeling control algorithms, [1,2,3,4] modeling plants can lead to more robust designs. Plant modeling enables engineers to test a controller with multiple plant parameters, and to simulate nominal or ideal values. Modeling variable physical parameters provides a better representation of what can be expected in production. Monte Carlo analysis is a standard method of simulating variability that occurs in real physical parameters. Automotive companies use Monte Carlo testing to ensure high quality, robust designs. Due to time and resource constraints, engineers often examine only a limited number of key parameters rather than an entire set. This leaves the design vulnerable to problems caused by missing the full potential impact of parameters that were unvaried during testing. New high-performance computing tools and multiprocessor machines have eliminated the time and resource limitations in many cases by providing the processing power needed to vary large numbers of parameters in complex dynamic models. This paper presents new methods for distributing Monte Carlo analyses of system models across multiple machines. These methods reduce testing time and enable more complete analyses, ensuring better quality when designs go into production.
منابع مشابه
Monte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System
We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...
متن کاملMonte Carlo characterization of photoneutrons in the radiation therapy with high energy photons: a Comparison between simplified and full Monte Carlo models
Background: The characteristics of secondary neutrons in a high energy radiation therapy room were studied using the MCNPX Monte Carlo (MC) code. Materials and Methods: Two MC models including a model with full description of head components and a simplified model used in previous studies were implemented for MC simulations. Results: Results showed 4-53% difference between full and wit...
متن کاملA Monte Carlo simulation technique for assessment of earthquake-induced displacement of slopes
The dynamic response of slopes against earthquake is commonly characterized by the earthquake-induced displacement of slope (EIDS). The EIDS value is a function of several variables such as the material properties, slope geometry, and earthquake acceleration. This work is aimed at the prediction of EIDS using the Monte Carlo simulation method (MCSM). Hence, the parameters height, unit specific ...
متن کاملSpatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کاملA Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008